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Abstract

In this paper we consider a tra$c-light network where every node in the network is associated with the
constraint consisting of a repeated sequence of time windows. The constraint aims to simulate the operations
of tra$c-light control in an intersection of roads. With this kind of constraints in place, directions of routes
when passing through the intersections can be formally modeled. The objective of this paper is to 3nd the
3rst K shortest looping paths in the tra$c-light network. An algorithm of time complexity of O(rK2|V1|3)
is developed, where r is the number of di6erent windows of a node and |V1| is the number of nodes in the
original network.
? 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

A shortest path problem (SPP) deals with 3nding a path with minimum time, distance, or cost from
a source node to a destination node through a connected network. It is an important issue because
of its wide range of applications in transportations (Swersey and Ballard [1]) and communications
(Chen and Chin [2]). We refer readers to Bodin et al. [3], Deo and Pang [4], and Golden and
Magnanti [5] for more details.

The time-constrained shortest path problem (TCSPP) generalizes the SPP and has been the
focus of study over the years. Time window appears to be a common form of time constraint
that assumes that a node can be visited only in a speci3ed time interval (Desrochers et al. [6];
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Dumas et al. [7]; Kohl and Madsen [8]). In other words, a time window de3nes the earliest time
and the latest time that the node is available. In a recent paper, Chen and Yang [9] introduced a
new kind of time constraint called tra$c-light constraint that associates each node with a repeated
sequence of di6erent windows in which directions of routes are also taken into account. By this
formulation, 3nding the quickest path in a city with a number of tra$c-light controls is equivalent
to solving a SPP in the formulated tra$c-light network. Since the introduction of the tra$c-light
network, the same authors have proposed several extensions. For example, to reJect what occurs
in practice, Chen and Yang [10] considered “weighed number of stops” as an additional criterion
and solved this bi-criteria problem in polynomial time if a maximum weighted number of stops is
given. Another extension is to 3nd K shortest paths instead of one path only. One of reasons to
do so is that certain constraints may be di$cult to de3ne or hard to optimize; a common strat-
egy is to compute several paths and then choose among them by considering the other criteria
(Eppstein [11]).

Traditionally, the 3rst K shortest paths found can be members of two major classes: (1) simple
paths (paths without repeated nodes and arcs), and (2) looping paths (paths with repeated nodes and
arcs). These two classes of paths have long been studied together because they are not only similar
(3nding K paths) in general but also complementary (simple versus looping) in particular. This fact
motivated the development of not only algorithms for 3nding the 3rst K simple paths (Yang and
Chen [12]), but also algorithms for 3nding the 3rst K looping paths. Moreover, the path deletion
algorithm proposed in this paper di6ers from the path partition algorithm of Yang and Chen [12]
in that, to 3nd the next shortest path given one is available, the former algorithm removes the entire
path while the latter algorithm partitions the path into a set of sub-paths.

As we stated above, the 3rst K shortest paths found can be classi3ed as simple paths or looping
paths. Regardless of the network under consideration, the e6orts required to 3nd simple paths appear
to be harder than those to 3nd looping paths. In the 3rst class, Yen [13] proposed a very e$cient
algorithm that 3nds the 3rst K simple paths in a general network in O(K |V |3) time, where |V | is
the number of nodes. Katoh et al. [14] improved the time bound to be O(K(|A|+ |V | log|V |)) for an
undirected network, where |A| is the number of arcs. Recently, Hadjiconstantinou and Christo3des
[15] presented an e$cient implementation of a KSP algorithm based on the method of Katoh
et al. [14]; they suggested that the KSP algorithm is suitable for 3nding a large number of simple
paths between any pair of nodes. In the second class, Dreyfus [16] developed an e$cient algo-
rithm that found the K shortest paths from one node to each one of the other nodes in the time of
O(K |V | log|V |), once the shortest tree has been determined. Fox [17] gave an algorithm to run in
O(|V |2 + K |V | log|V |) time. Using a concept of path deletion, Martins [18] developed an algorithm
with the worst case to be O(K3|V |). Later, this worst case time was improved to be O(K2|A|)
by Azevedo et al. [19] using an e$cient computational implementation. According to Azevedo
et al. [19], however, comparative computational experiments showed that their algorithm outper-
formed that of Dreyfus [16] despite its worse complexity. For a given pair of nodes, Eppstein [11]
used an implicit representation of paths to signi3cantly improve the time to be O(|A| + |V | log|V | +
K |V |).

The rest of this paper is organized as follows. In Section 2, we describe the tra$c-light network
and develop an algorithm for 3nding the 3rst K shortest looping paths in the present network. We
also provide the time complexity of the algorithm in this section. We include the conclusion and
directions for future research in Section 3.
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2. The problem and solution

In this section, we 3rst de3ne the tra$c-light network in Section 2.1. In Section 2.2, we in-
troduce algorithms of Martins [18] and Azevedo et al. [19] that closely relate to our algorithm.
We present our algorithm with an example, and show the complexity of the algorithm in
Section 2.3.

2.1. Problem de7nition

To be consistent, we follow the notations of Chen and Yang [9]. Let N = (V1 ∪ V2; A;WL; t; s; d)
denote a tra$c-light network, where V1 is the node set without window constraints, V2 is the
node set with window constraints, A is the arc set without multiple arcs and self-loops, t(u; v)
is the travel time of arc (u; v) ∈A. For each node u∈V2, it is associated with a window-list
WL(u) = (wsu; wu;1; wu;2; : : : ; wu;r), where wsu is the starting time of the 3rst window and wu; i is
the ith time window of node u for i = 1 to r. Each window wu; i is associated with a duration du; i

and a set of node-triplets NTu; i, where a node-triplet 〈x; u; y〉 is in NTu; i if visiting node y from node
x is allowed in window wu; i. If we represent windows using a repeated sequence and by assuming
wu;0 =wu;r , we have the relationship that wu; (k×r)+i =wu; i for any nonnegative integers k and i, where
i6 r. In this context, the sequence of the windows describes the whole phasing of the tra$c-light
signal.

Since a node u in V1 can be regarded as a node in V2 by associating it with a window of in3nite
duration and containing all possible node-triplets, we assume that all the nodes are in the set V2

for ease of presentation. Consider Fig. 1a that illustrates the tra$c-light network, where the number
beside each arc is the arc’s travel time. We also show each node’s, say u, duration du; i and its
node-triplets NTu; i wherever appropriate. For example, the 3rst window of node C starts at time 3;
the duration of window wC;1+2i is 2 and the duration of window wC;2+2i is 4 where i is a nonnegative
integer. The triplet 〈A;C; d〉 is the allowable route in window wC;1+2i; 〈B;C; d〉 and 〈D;C; d〉 are
allowable in window wC;2+2i. Therefore, if at node C from node A, we can visit node d only in
window wC;1+2i, and so on. Chen and Yang [9] have developed an algorithm, which labels arcs
rather than nodes, to 3nd the shortest path as (s;A;D; d) with total time 11 (Fig. 1b). Because
the algorithm labels arcs, each arc (u; v) in A is associated with a label arrived(u; v) to denote the
earliest time to arrive at node v through arc (u; v). We brieJy explain how we compute the total
time 11 in Fig. 1b. Because there are two arcs leaving node s, arcs (s;A) and (s;B), we need to
compute the values of arrived(s;A) and arrived(s;B), which are simply 4 and 5, respectively. Now
consider node A. Although we visit node A at time 4, we cannot leave for node B or node C until
the beginning time of window wA;2 that contains the node-triplets 〈s;A;B〉 and 〈s;A;C〉. Because
this time is 5, arrived(A;B)=5+3=8 and arrived(A;C)=5+5=10. In contrast, we can leave for
node D immediately because time 4 falls within window wA;1, and hence arrived(A;D) = 4 + 1 = 5.
Similarly, consider node B where arrived(s;B) = 5. Since the 3rst time period of 〈s;B;C〉 and
〈s;B;D〉 in window wB;1 is from 2 to 4, we must wait until the second time period of wB;1, which
is 8. Therefore, arrived(B;C) = 8 + 2 = 10 and (B;D) = 8 + 7 = 15. Continuing the same way,
we eventually 3nd the shortest path is (s;A;D; d) with time 11. For more details, see Chen and
Yang [9].
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Fig. 1. (a) The tra$c-light network and (b) the shortest path p in the tra$c-light network.

2.2. The algorithms by Martins and Azevedo et al.

Since the algorithms proposed by Martins [18] and Azevedo et al. [19] form the basis of our
algorithm, we will describe their algorithms and complexities before we proceed. For each network
N , Martins’ algorithm [18] executes two algorithms: (1) a shortest path algorithm to 3nd the shortest
path p, and (2) a path deletion algorithm to generate a new network N ′. The main idea of this path
deletion algorithm is that once a shortest path was determined, the path would be removed from the
network. In fact, by adding new well-de3ned nodes and arcs, this path deletion algorithm results
in an enlarged network where all the paths but the deleted one can be determined. That is, given
a shortest path p in the network N , the path deletion algorithm will delete p from the network in
such a way that a new network N ′ is generated where all paths but p in N ′ can be determined from
N . In terms of 3nding the 3rst K shortest paths given N1 as the initial network, this means that a
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Fig. 2. (a) The sample network N with the shortest path p, (b) delete p from N to generate N ′ using Martins’ algorithm
and (c) delete p from N to generate N ′ using the algorithm of Azevedo et al.

sequence of networks {N1; N2; : : : ; Ni : : : ; Nk} will be generated where the ith shortest path pi will be
determined from Ni. In total, Martins’ algorithm [18] executes the shortest path algorithm K times
and the path deletion algorithm K − 1 times for a given network to 3nd the K shortest paths; the
worst case of the algorithm is O(K3|V |).

To show how the path deletion algorithm works, assume p=(0=v0; s=v1; : : : ; vm−2; vm−1=d; vm=t)
is a shortest path in some N , where m¿ 3. Following the de3nitions of Azevedo et al. [19], for
a node u, let O(u) = {(u; v) ∈A | v∈N} be the set of its outgoing arcs, and for a node v, let
I(v) = {(u; v) ∈A | u∈N} be the set of its incoming arcs. To obtain the enlarged network N ′ by
deleting p, Martins’ path deletion algorithm [18] adds new nodes, adds set of outgoing arcs of these
new nodes, and deletes the 7rst arc of p. The algorithm is as follows:

1. The set {v′
1; v

′
2; : : : ; v

′
m−1} of new nodes is added to N .

2. The set of outgoing arcs of node v0 is updated as

O(v0) = O(v0) − {(v0; v1)} ∪ {(v0; v′
1)}:

3. The set of outgoing arcs of each new node is de3ned as

O(v′
i) = {(v′

i ; v) | (vi; v) ∈O(vi) and v 	= vi+1} ∪ {(v′
i ; v

′
i+1)}; ∀i∈ {1; : : : ; m − 2}; and

O(v′
m−1) = {(v′

m−1; v) | (vm−1; v) ∈O(vm−1)}:
Consider a simple network N in Fig. 2a, where the shortest path p = (0; 1; 2; 3; 6; t) is shown by

bold arcs. Applying the algorithm produces the network N ′ as shown in Fig. 2b. The set of new nodes
added in step 1 is {1′; 2′; 3′; 6′}. The 3rst arc of p, i.e., the arc (0; 1), is deleted and replaced by (0; 1′)
in step 2. Finally, the set of outgoing arcs added in step 3 is {(1′; 4); (2′; 5); (3′; 5); (1′; 2′); (2′; 3′);
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(3′; 6′)}. Note that we classify the arc set into two subsets: (1) the subset that emanates from new
nodes to old nodes, i.e., {(1′; 4); (2′; 5); (3′; 5)}, and (2) the subset that emanates from new nodes
to new nodes, i.e., {(1′; 2′); (2′; 3′); (3′; 6′)}. As we will see, the latter subset remains present in
the algorithm described below. Therefore, it is the former subset that makes the di6erence between
Martins’ algorithm [18] and the algorithm of Azevedo et al. [19].

Aimed at improving the performance of Martins’ algorithm [18], the path deletion algorithm of
Azevedo et al. [19] deletes the last arc of p and adds the set of incoming arcs of new nodes. To
see why doing so can improve the performance, remember that Martins’ algorithm [18] executes the
shortest path algorithm K times and the path deletion algorithm K − 1 times. By removing the last
arc of p and adding incoming arcs of new nodes, the algorithm of Azevedo et al. [19] can save
K − 1 executions of the shortest path algorithm. The saving derives from the fact that after deleting
p from N to generate N ′, only the labels of those newly added arcs in N ′ are to be determined. This
is owing to the property that the labels of the arcs in N will remain permanent in N ′. Moreover,
the sub-path of a deleted path p in N will be explicitly determined in N ′. (See Azevedo et al.
[19] for more details.) Therefore, the worst case of the algorithm of Azevedo et al. [19] reduces to
O(K2|A|). The path deletion algorithm is as follows:

1. The set {v′
1; v

′
2; : : : ; v

′
m−1} of new nodes is added to N .

2. The set of incoming arcs of each new node is de3ned as

I(v′
1) = {(v; v′

1) | (v; v1) ∈ I(v1) and v 	= v0}; and

I(v′
i) = {v; v′

i} | (v; vi) ∈ I(vi) and v 	= vi−1} ∪ {(v′
i−1; v

′
i)}; for any i∈ {2; : : : ; m − 1}:

3. The set of incoming arcs of node t is updated as

I(t) = I(t) − {(vm−1; t)} ∪ {(v′
m−1; t)}:

The result of applying this algorithm to the network in Fig. 2a is shown in Fig. 2c. The set of
incoming arcs of new nodes added by step 2 is {(4; 2′); (5; 2′); (5; 6′); (1′; 2′); (2′; 3′); (3′; 6′)}, where
the subset {(1′; 2′); (2′; 3′); (3′; 6′)} is the same as that of Martins’ algorithm [18] as we mentioned
earlier. Finally, the last arc of p, i.e., the arc (6; t), is deleted and replaced by (6′; t) in step 3. In
short, the major di6erences between two path deletion algorithms lie in: (1) delete 3rst arc versus
last arc, (2) add outgoing arcs versus incoming arcs of new nodes.

2.3. The algorithm

Having described the path deletion algorithms for a typical network, we present our path deletion
algorithm for the tra$c-light network. As mentioned in Azevedo et al. [19], we also assume that
a super-initial node 0 and a super-terminal node t with zero arcs (0; s) and (d; t) are added to N1

to allow the possible repetition of the initial node s and terminal node d. Let the shortest path p
be (0 = v0; s = v1; : : : ; vm−2; vm−1 = d; vm = t) as de3ned earlier. To obtain the enlarged network by
deleting p, our path deletion algorithm chooses to delete the last arc of p. Recall that each node in
a tra$c-light network is associated with a set of node-triplets, therefore, our path deletion algorithm
needs to add not only nodes and arcs but also the node-triplets of the nodes. Given p and N , the
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enlarged network N ′ is obtained by the algorithm below, where notations are:

V (V ′) is the node set of N (N ′),
A(A′) is the arc set of N (N ′),
NTv; i(NT ′

v; i) is the set of node-triplets of the ith window of node v in N (N ′),
v′
j is the added new node in N ′ corresponding to vj in N , and
uw is a node in N or N ′.

Network Enlargement Algorithm

1. (Add new nodes)
Let V ′ = V , A′ = A, and NT ′

v; i = NTv; i.
For j = 1; : : : ; m − 1, add a node v′

j to V ′.
2. (Add incoming arcs of v′

j from nodes in N , but exclude arcs (v′
j−1, v

′
j))

For j = 1; : : : ; m − 1
For w = 1; : : : ; |V |

If arc (uw; vj) ∈A but uw 	= vj−1; A′ = A′ ∪ (uw; v′
j); set t(uw; v′

j) = t(uw; vj),
NT ′

uw;iNT
′
uw;i ∪ {〈x; uw; v′

j〉 | 〈x; uw; vj〉 ∈NTuw;i and x∈V} for i = 1 to r.
3. (Add arcs (v′

j ; v
′
j+1))

For j = 1; : : : ; m − 2
A′ = A′ ∪ (v′

j ; v
′
j+1), set t(v′

j ; v
′
j+1) = t(vj; vj+1).

NT ′
v′
j ;i

= {〈x; v′
j ; v

′
j+1〉 | x 	= vj−1 and x∈V and 〈x; vj; vj+1〉 ∈NTvj;i}

∪{〈v′
j−1; v

′
j ; v

′
j+1〉 | 〈vj−1; vj; vj+1〉 ∈NTvj;i} for i = 1 to r.

NT ′
v′
m−1 ;1

= {〈x; v′
m−1, v

′
m〉 | x∈V ′} and let the duration of this window be in3nite.

4. Delete arc (vm−1; t) from A′ and add arc (v′
m−1; t) to A′. Set t(v′

m−1; t) = t(vm−1; t).

Example 1. To illustrate this algorithm, reconsider Fig. 1b where the shortest path is p1=(s;A;D; d).
Initially, the set of new nodes {s′;A′;D′ and d′} is added to the network N as shown in Fig. 3a.

Beginning step 2, consider j equals 1 (i.e., v1 = node s). When w = 1 in the inner loop, new arc
(B; s′) is added to the set of incoming arcs of s′ because (B; s) ∈A but B 	= v0 (node 0). In addition,
since (B; s′) is added to the set of outgoing arcs of node B, the set of node-triplet NT ′

B;1 is changed
to {〈s;B;C〉, 〈s;B;D〉, 〈s;B; s〉} ∪ {〈s;B; s′〉} = {〈s;B;C〉, 〈s;B;D〉, 〈s;B; s〉, 〈s;B; s′〉}, and NT ′

B;2 is
changed to {〈A;B;C〉; 〈A;B;D〉; 〈A;B; s〉} ∪ {〈A;B; s′〉} = {〈A;B;C〉, 〈A;B;D〉, 〈A;B; s〉, 〈A;B; s′〉}.
For brevity, these sets of node-triplets are not shown in the 3gure. When j = 2, no arc is added.
When j = 3, new arc (B;D′) is added; NT ′

B;1 is updated to {〈s;B;C〉, 〈s;B;D〉, 〈s;B; s〉, 〈s;B; s′〉,
〈s;B;D′〉} and NT ′

B;2 to {〈A;B;C〉, 〈A;B;D〉, 〈A;B; s〉, 〈A;B; s′〉, 〈A;B;D′〉}. The result of this step
is shown in Fig. 3b.

The task of step 3 is to add the arcs from node v′
j to node v′

j+1 that was not 3nished in step 2
because more care should be taken to update the sets of node-triplets. When j = 1 in step 3, the
new arc to be added is (v′

1v
′
2), which is the arc (s′; A′). Since B 	= v0 and 〈B; s;A〉 ∈NTs;1; NT ′

s′ ;1
is newly created as {〈B; s′;A′〉}, thus 3nishes the execution for j = 1. For j = 2, the new arc to
be added is (v′

2, v′
3), which is the arc (A′;D′);NT ′

A′ ;1 is newly created as {〈s′;A′;D′〉}. Similarly,
when j = 3, arc (D′; d′) is added; NT ′

D′ ;1 = {〈A′;D′; d′〉} and NT ′
D′ ;2 = {〈B;D′; d′〉}. Once the loop

is 3nished, we set NT ′
d′ ;1 = {〈D′; d′; t〉; 〈C; d′; t〉} to be in3nite and show the result in Fig. 3c.
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Fig. 3. (a) Add the set of new nodes {s′;A′;D′; d′} to the network, (b) add incoming arcs of new nodes (emanating from
old nodes), (c) add incoming arcs of new nodes (emanating from new nodes) and (d) replace the last (d; t) by (d′; t).

Finally, the arc (d; t) is deleted and the arc (d′; t) is added in step 4. Fig. 3d shows the 3nal
result and Table 1 summarizes the added nodes and sets of node-triplets after the execution of the
algorithm.

To see how the K − 1 executions of the shortest path algorithm can be avoided, note that the
labels of all arcs in Figs. 1b remain unchanged (i.e., permanent) in Fig. 3d. The property that labels
remain permanent arises from the de3nition of the attached labels arrived(u; v), which denotes the
earliest time to reach node v through arc (u; v). On the one hand, since all paths in the old network
remain present in the augmented network, the labels will not be increased. On the other hand, nor
will the labels be decreased because the algorithm does not create any new path to connect the old
arcs or nodes. As a result, the labels remain unchanged. To compute the labels of all new arcs, we
need to execute two steps: (1) compute the labels of the arcs from the nodes in V to the nodes in
V ′ − V , and (2) compute the label of each arc (v′

j ; v
′
j+1) sequentially along the newly-created (we

will use augmented interchangeably) path. These two steps are described in the following procedure.

1. For every node u in V
For every node w in V and (w; u) in A

For every node v in the augmented path and (u; v) in A′ − A
Update arrived(u; v) if it can be reduced by coming from arc (w; u).
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Table 1
Nodes and node-triplets added after executing Network Enlargement Algorithm

Node du; I Original NTu; i Added NT ′
u; i

s ds;1 〈B; s;A〉
ds;2 〈B; s;B〉

s′ ds′ ;1 〈B; s′;A′〉
A dA;1 〈s;A;D〉

dA;2 〈s;A;B〉 〈s;A;C〉
A′ dA′ ;1 〈s′;A′;D′〉
B dB;1 〈s;B;C〉 〈s;B;D〉 〈s;B; s〉 〈s;B;D′〉 〈s;B; s′〉

dB;2 〈A;B;C〉 〈A;B;D〉 〈A;B; s〉 〈A;B;D′〉 〈A;B; s′〉
C dC;1 〈A;C; d〉 〈A;C; d′〉

dC;2 〈B;C; d〉 〈D;C; d〉 〈B;C; d′〉 〈D;C; d′〉
D dD;1 〈A;D;C〉 〈A;D; d〉

dD;2 〈B;D;C〉 〈B;D; d〉
D′ dD′ ;1 〈A′;D′; d′〉

dD′ ;2 〈B;D′; d′〉

2. For every arc (v′
j ; v

′
j+1) in the augmented path

For every node w in V ∪ {v′
j−1} and (w; v′

j) in A′ − A
Update arrived(v′

j ; v
′
j+1) if it can be reduced by coming from arc (w; v′

j).

To illustrate these two steps, reconsider Figs. 3b and c. In step 1, we will compute the labels of
the arcs from the nodes in V to the nodes in V ′ − V , including arrived(B; s′), arrived(B;D′) and
arrived(C; d′). Take arrived(C; d′), which is 14 in Fig. 3b, for example. Since arc (C; d′) can be
reached through arc (A;C) or arc (B;C) or arc (D;C), we need to know which one arrives earlier.
If through arc (A;C), the arrival time as 14; if through (B;C), the time is 11 + 4 = 15; if through
(D;C), the time is 12 + 4 = 16. The result indicates that reaching arc (C; d′) by coming from arc
(A;C) will give the minimum value of arrived(C; d′). As for step 2, recall that we need to compute
the label of each arc (v′

j ; v
′
j+1) along the augmented path, i.e., arrived(s;A′), arrived(A′;D′) and

arrived(D′; d′). Consider arrived(D′; d′) = 17 in Fig. 3c. Since arc (D′; d′) can be reached through
either arc (A′;D′) or arc (B;D′), we need to compute their arrival times. The arrival time of coming
through arc (B;D′) is 15 + 2 = 17, but through arc (A′;D′) is 16 + 2 = 18. Therefore, the value of
arrived(D′; d′) is 17 that goes through arc (A′;D′).

Only the subset of arcs is scanned because the algorithm does not completely scan each arc using
this two-step procedure. We use the following lemmas to analyze the time complexity of the network
enlargement algorithm and label update operation.

Lemma 1. Every newly added node has at most |V1| adjacent nodes with arcs going into it, i.e., no
matter how many number of iterations have been done, the in-degree of a node is bounded from
above by this value, where |V1| is the number of nodes of network N1.

Proof. If arc (w; u) is on the shortest path, we will create node u′ and arcs {(x; u′) | (x; u) in A} ∪
{(w′; u′)}. So, the in-degree of node u′ is the same as that of node u.
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Lemma 2. The time complexity of executing Network Enlargement Algorithm for the kth iteration
is O(rk|V1|3), where r is the number of di=erent windows of a node and |V1| is the number of
nodes of network N1.

Proof. Since the most time-consuming part is in step 2, we analyze only the complexity of this
part and omit the other steps for clarity. Step 2 iterates at most m times, where m is the number
of nodes of the augmented path in the kth network that may contain as many as k|V1| nodes in the
worst case. Because each node on the path contains at most |V1| adjacent nodes with arcs entering
it, there are at most k|V1|2 newly added arcs (uw; v′

j). During the iterations, we examine each arc
(uw; vj) exactly once to check whether (uw; vj) exists. If it does, we add arc, travel time, and update
node-triplets. Among them, each operation of adding arc and travel time requires O(1) time. As for
updating node-triplets, note that for a certain vj in the outer loop, at most |V1| node-triplets will be
present for the node uw in the inner loop due to Lemma 1. Since a node uw contains at most r
windows, the time of the inner loop is O(r|V1|). Therefore, the time of step 2 is O(rk|V1|3), and so
does the whole algorithm.

Lemma 3. The time complexity to update labels in the kth iteration is O(log rk|V1|3), where r is
the number of di=erent windows of a node and |V1| is the number of nodes of network N1.

Proof. In step 1, node v is a node appearing in the augmented path. Each node v contains at most
O(|V1|) incoming arcs like (u; v) by Lemma 1; in turn, each node u contains at most O(|V1|) incoming
arcs like (w; u). Since the length of the augmented path is at most O(k|V1|), step 1 needs O(k|V1|3)
times to compute arrived(u; v). As for step 2, we need O(|V1|k) times to compute arrived(v′

j ; v
′
j+1),

for all of the arcs in the augmented path must be computed in order. Since each computation of
arrived(u; v) can be done in time of O(log r) by Lemma 1 of Chen and Yang [9], the total time
required to update the labels is O(log rk|V1|3).

With the algorithms to enlarge network and update labels in place, the algorithm to 3nd the 3rst
K shortest looping paths is as follows.

K Shortest Looping Algorithm

1. Find p1 by using the algorithm of Chen and Yang [9].
2. For k = 2 to K

Use Network Enlarge Algorithm.
Update labels of added nodes and arcs.

Lemma 4. The time complexity of the K Shortest Looping Algorithm is O(rK2|V1|3), where r is
the number of di=erent windows of a node and |V1| is the number of nodes of network N1.

Proof. Step 1 can be done in time of O(r|V1|3). Step 2 iterates K − 1 times and each iteration
consists of two parts, namely, enlarging network and updating labels. Since each enlarging network
can be done in O(rk|V1|3) as shown in Lemma 2, the total time for K − 1 iterations is O(rK2|V1|3).
To update labels, by Lemma 3 it can be done in time O(log rk|V1|3), and hence the total time for
K − 1 iterations is O(log rK2|V1|3). As a result, the total time of the algorithm is O(rK2|V1|3).



H.-H. Yang, Y.-L. Chen / Computers & Operations Research 32 (2005) 571–581 581

3. Conclusions

In this paper, we develop an e$cient algorithm for enumerating the 3rst K shortest looping paths in
a tra$c-light network. Because the complexity of the proposed algorithm is shown to be polynomial,
the algorithm can be applied to solve problems in reasonable time. One possible extension of the
research is to consider the situation where one can choose to wait for some time on a node and
leave later. Dealing with this issue would be challenging because of enumeration of all possible
paths resulting from the varying length of time to wait.
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